

Reconstruction-based 3D Perception

Jiawei He

Jul 16th, 2023

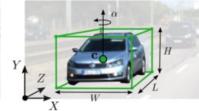
Background & Previous Work

BA-Det

□ 3D Perception from Images

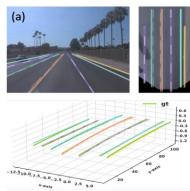
3D object detection

Output 3D Bounding Box



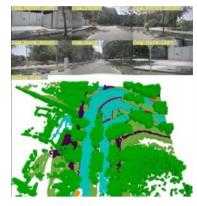
3D multi-object tracking

3D lane detection



BEV semantic segmentation

3D occupancy prediction



Optimizing

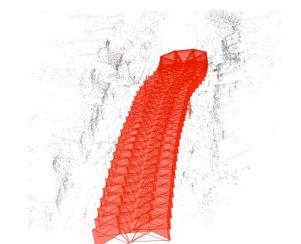
Bundle Adjustment (BA)

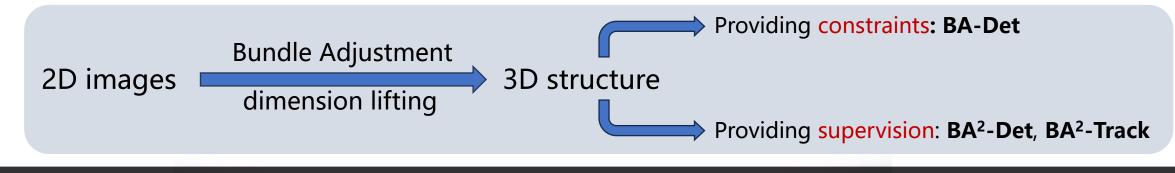
- Widely used in scene reconstruction and SLAM
- Jointly optimizing camera pose and point cloud
- Non-linear least-squares problem

Optimizing

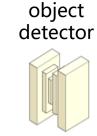
Camera Pose 3D Point Loc

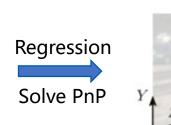
$$\{\bar{\mathbf{T}}_{gc}^{t}\}_{t=1}^{T}, \{\bar{\mathbf{P}}_{i}\}_{i=1}^{m} = \operatorname*{arg\,min}_{\{\mathbf{T}_{gc}^{t}\}_{t=1}^{T}, \{\mathbf{P}_{i}\}_{i=1}^{m}} \frac{1}{2} \sum_{i=1}^{m} \sum_{t=1}^{T} ||\mathbf{p}_{i}^{t} - \Pi(\mathbf{T}_{gc}^{t}, \mathbf{P}_{i}, \mathbf{K})||^{2}$$

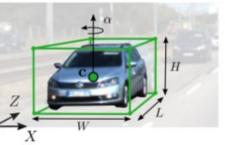




Monocular 3D Object Detection







- Regressing directly
 - CenterNet (arXiv 19)
 - FCOS3D (CVPRW 21)
 -

Based on depth map

- PseudoLiDAR (CVPR 19)
- PL++ (ICLR 20)

•

.

- D4LCN (CVPR 20)
- PatchNet (ECCV 20)
- CaDDN (CVPR 21)

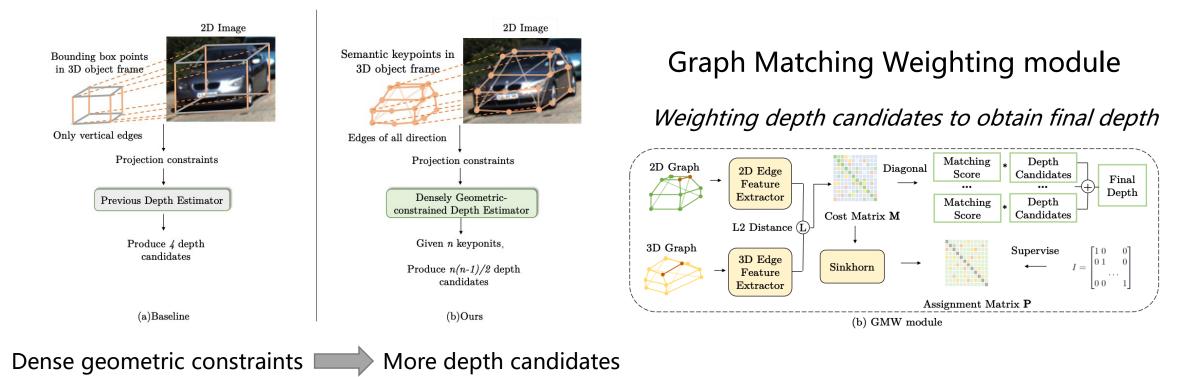
Geometric constraints

- DeepMANTA (CVPR 17)
- MonoFlex (CVPR 21)
- AutoShape (CVPR 21)
- Epro-PnP (CVPR 22)
- DCD (ECCV 22)

•••••



Densely Geometric-Constrained Depth Estimator (DCD)

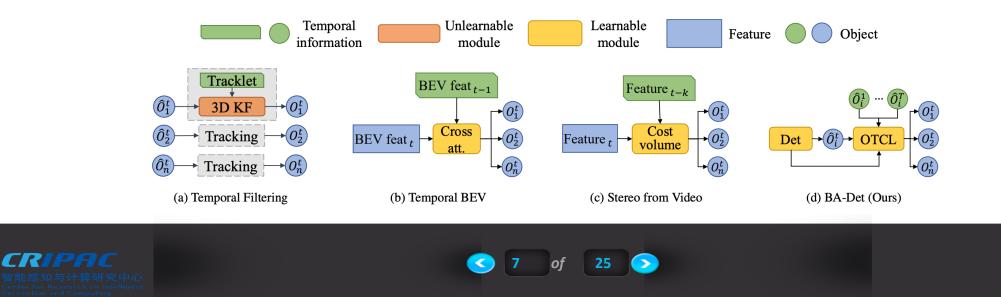


Yingyan Li, Yuntao Chen, Jiawei He, Zhaoxiang Zhang. *Densely Constrained Depth Estimator for Monocular 3D Object Detection.* In European Conference on Computer Vision (ECCV) 2022.

3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

Existing Video-based Methods

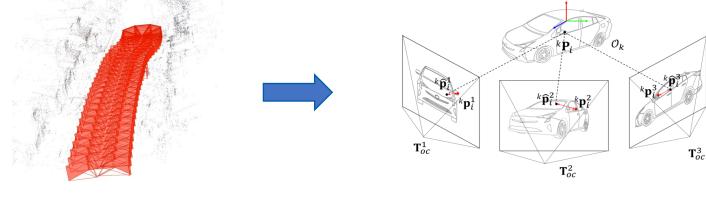
- a) Temporal filtering: Without learning
- b) Temporal BEV: Short-term, feature drifting (dynamic objects)
- c) Stereo from video: Short-term (Two-frame), ignoring dynamic objects



3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

Object-centric Geometric Constraints in Video

- From Scene-level BA to Object-centric BA
 - Optimizing camera pose → optimizing object pose
 - Correspondence: hand-craft sparse feature → learnable dense feature



25

Scene-level BA

Object-centric BA

3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

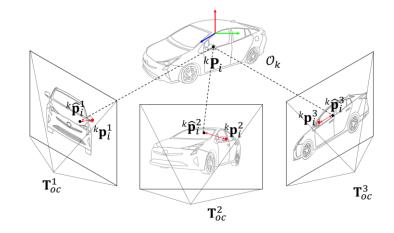
Object-centric Geometric Constraints in Video

■ Object-centric BA

$$\bar{\mathcal{T}}_k, \bar{\mathcal{P}}_k = \operatorname*{arg\,min}_{\mathcal{T}_k, \mathcal{P}_k} \frac{1}{2} \sum_{i=1}^m \sum_{t=1}^T ||^k \mathbf{p}_i^t - \Pi(^k \mathbf{T}_{co}^t, {}^k \mathbf{P}_i, \mathbf{K})||_2^2$$

Advantages compared with existing work

- Object-centric manner
 - ✓ Handling both static and moving objects
- Dense temporal correspondence learning
 - ✓ Utilizing longer temporal information



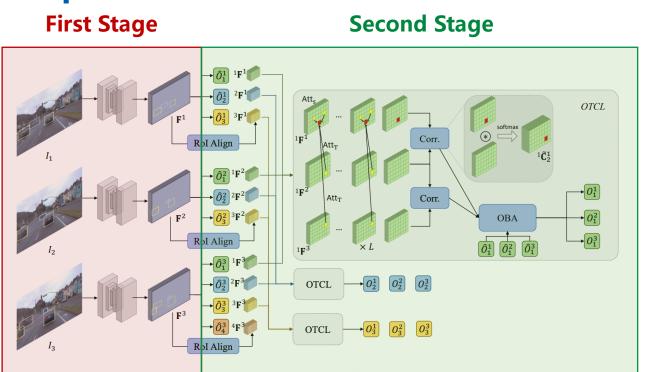
3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

10 of 25

□ BA-Det: Object-centric Global Optimizable Detector

■ First Stage

- ✓ Single-frame object detection
- ✓ Temporal object association
- Second Stage
- ✓ Temporal/spatial aggregation
- Correspondence learning with featuremetric OBA loss



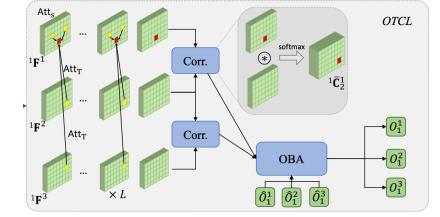
3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

Object-centric Temporal Correspondence Learning Module

Featuremetric Object Bundle Adjustment Loss

Featuremetric OBA $\bar{\mathcal{T}}_{k}, \bar{\mathcal{P}}_{k} = \underset{\mathcal{T}_{k}, \mathcal{P}_{k}}{\operatorname{arg\,min}} \frac{1}{2} \sum_{i=1}^{m} \sum_{t=1}^{T} ||\mathbf{f}[^{k}\mathbf{p}_{i}^{t}] - \mathbf{f}[\Pi(^{k}\mathbf{T}_{oc}^{t}, ^{k}\mathbf{P}_{i}, \mathbf{K})]||_{2}^{2}$ featuremetric reprojection loss $\mathcal{L}_{rep}^{k} = \sum_{i=1}^{m} \sum_{t=1}^{T} ||^{k}e_{i}^{t}||_{2}^{2} = \sum_{i=1}^{m} \sum_{t=1}^{T} \sum_{t'=1}^{T} ||^{k}\mathbf{f}_{i}^{t} - ^{k}\mathbf{f}_{i}^{t'}||_{2}^{2}$ L2 norm to cosine distance

$$\mathcal{L}_{\text{OBA}}^{k} = -\sum_{i=1}^{m} \sum_{t=1}^{T} \sum_{t'=1}^{T} \log({}^{k} \widetilde{\mathbf{C}}_{t}^{t'} [{}^{k} \bar{\mathbf{p}}_{i}^{t}, {}^{k} \bar{\mathbf{p}}_{i}^{t'}])$$



Supervised on correlation between temporal Rol features

3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

□ Results on Waymo Open Dataset (WOD)

		LEV	EL_1			LEV	EL_2	
	3D AP ₇₀	3D APH ₇₀	$3D \ AP_{50}$	3D APH ₅₀	3D AP ₇₀	3D APH ₇₀	3D AP ₅₀	$3D \ APH_{50}$
M3D-RPN [2]	0.35	0.34	3.79	3.63	0.33	0.33	3.61	3.46
PatchNet [28]	0.39	0.37	2.92	2.74	0.38	0.36	2.42	2.28
PCT [42]	0.89	0.88	4.20	4.15	0.66	0.66	4.03	3.99
MonoJSG [23]	0.97	0.95	5.65	5.47	0.91	0.89	5.34	5.17
GUPNet [27]	2.28	2.27	10.02	9.94	2.14	2.12	9.39	9.31
DEVIANT [18]	2.69	2.67	10.98	10.89	2.52	2.50	10.29	10.20
CaDDN [33]	5.03	4.99	17.54	17.31	4.49	4.45	16.51	16.28
DID-M3D [31]	-	-	20.66	20.47	-	-	19.37	19.19
BEVFormer [22] [†]	-	7.70	-	30.80	-	6.90	-	27.70
DCD [21]	12.57	12.50	33.44	33.24	11.78	11.72	31.43	31.25
MonoFlex [51] (Baseline) BA-Det(Ours)†	11.70 16.60	11.64 16.45	32.26 40.93	32.06 40.51	10.96 15.57	10.90 15.44	30.31 38.53	30.12 38.12

Condition on depth range

	Method		3D AP ₇₀			3D APH ₇₀			3D AP ₅₀			BD APH ₅	0
		0-30	30-50	50- ∞	0-30	30-50	50 -∞	0-30	30-50	50-∞	0-30	30-50	$50-\infty$
	DCD [21]	32.47	5.94	1.24	32.30	5.91	1.23	62.70	26.35	10.16	62.35	26.21	10.09
L1	MonoFlex [51]	30.64	5.29	1.05	30.48	5.27	1.04	61.13	25.85	9.03	60.75	25.71	8.95
	BA-Det(Ours)†	37.74	11.04	3.86	37.46	10.95	3.79	71.07	37.15	14.89	70.46	36.79	14.61
	DCD [21]	32.30	5.76	1.08	32.19	5.73	1.08	62.48	25.60	8.92	62.13	25.46	8.86
L2	MonoFlex [51]	30.54	5.14	0.91	30.37	5.11	0.91	60.91	25.11	7.92	60.54	24.97	7.85
	BA-Det(Ours)†	37.61	10.72	3.37	37.33	10.63	3.31	70.83	36.14	13.62	70.23	35.79	13.37

+ 43%

3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

□ Ablation Study and Discussions

Ablation study

CRIPA

		LEV	EL_1	
	3D AP ₇₀	3D APH ₇₀	3D AP ₅₀	3D APH ₅₀
MonoFlex (baseline)	11.70	11.64	32.26	32.06
Our first-stage prediction	13.57	13.48	34.70	34.43
+3D Tracking	14.01	13.93	35.19	34.92
+ Learnable global optimization	15.85	15.75	38.06	37.76
+ Tracklet rescoring	16.43	16.30	40.07	39.70
+ Bbox interpolation	16.60	16.45	40.93	40.51

■ Static (Scene-level) vs. Object-centric

		LEV	EL_1	
	3D AP ₇₀	3D APH ₇₀	3D AP ₅₀	3D APH ₅₀
MonoFlex (baseline)	11.70	11.64	32.26	32.06
Initial prediction	13.57	13.48	34.70	34.43
Static BA	14.73	14.62	37.89	37.56
Ours	16.60	16.45	40.93	40.51

■ ORB feature vs. our learnable feature

	Ī	LEVEL_1 3D AP ₇₀ 3D APH ₇₀ 3D AP ₅₀ 3D APH ₅₀						
	L_t	3D AP ₇₀	3D APH ₇₀	3D AP ₅₀	3D APH ₅₀			
MonoFlex (baseline)	-	11.70	11.64	32.26	32.06			
BA-Det+ ORB feature [34] BA-Det+ Our feature	2.6 10	14.05 16.60	13.96 16.45	35.21 40.93	34.95 40.51			

Latency of each module

Total latency	181.5ms
First-stage detector	132.6ms
Object tracking	6.6ms
Feature correspondence	23.0ms
Object bundle adjustment	19.3ms

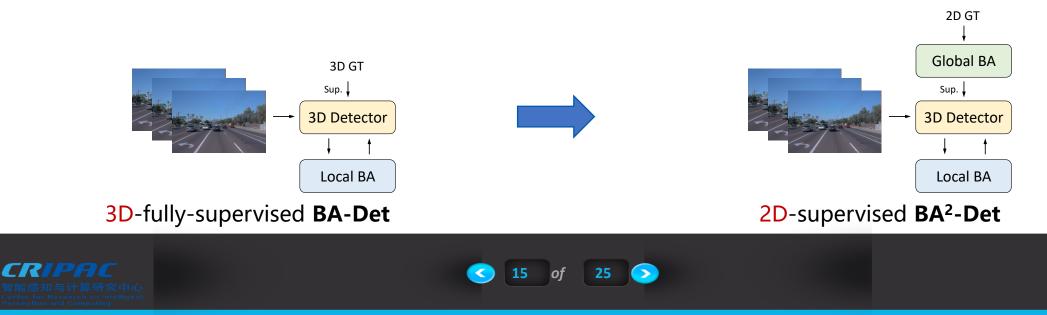
3D Video Object Detection with Learnable Object-Centric Global Optimization (CVPR 2023)

Qualitative Results

2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction (arXiv:2306.05418)

Motivation

- Camera-based 3D object detector (e.g., BA-Det) depends on 3D labels
 - 3D labels \rightarrow 2D labels: recover 3D structure from video
 - Scene-level global reconstruction + Object-level local reconstruction



2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction (arXiv:2306.05418)

Notable Problems

CRIPA

- 1. How to recover 3D location of each object with images?
 - ✓ Global BA + object clustering on point cloud
- 2. How to estimate 3D bounding boxes from object clusters?
 - ✓ Fitting 3D pseudo boxes (complete objects) + learning
- 3. How to generalize static pseudo labels to dynamic objects?

✓ Video-based detector (Local BA) + iterative self-retraining

2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction (arXiv:2306.05418)

17 of

25

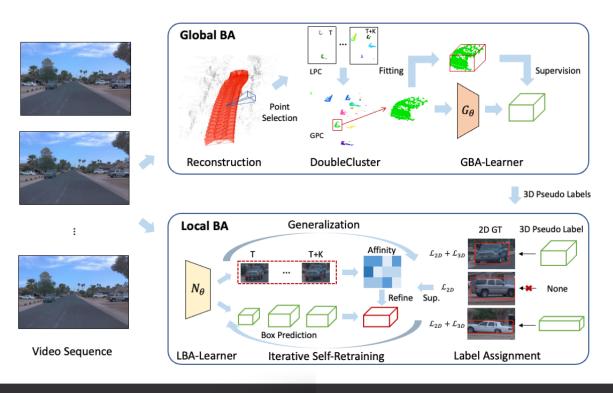
Global-to-local Pipeline

■ Global BA

- ✓ Scene-level Structure-from-Motion
- ✓ DoubleClustering
- ✓ GBA-Learner (cluster \rightarrow box)
- Local BA

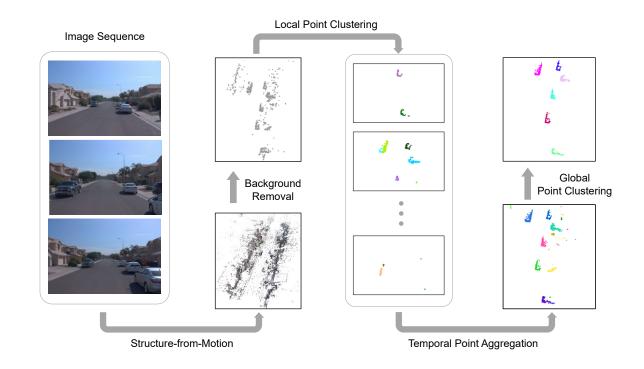
CRIPAC

- ✓ BA-Det with 2D label assignment (LBA-Learner)
- ✓ Iterative self-retraining



2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction (arXiv:2306.05418)

- Local Point Clustering
 - Main cluster for each object in each frame
- Global Point Clustering
 - Temporal cluster merging
 - Main cluster for each object in all frames



2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction (arXiv:2306.05418)

19 of 25 💽

Experiments

Main results on WOD

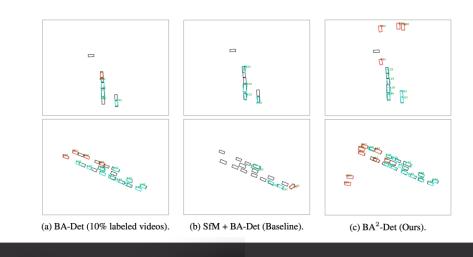
Method	3D Sup.	3D AP5	3D APH ₅	3D AP ₅₀	3D APH ₅₀	LET APL ₅₀	LET AP ₅₀	LET APH ₅₀
PatchNet [28]	100%†	-	-	2.92	2.74	-	-	-
M3D-RPN [2]	100%†	-	-	3.79	3.63	-	-	-
PCT [47]	$100\%^{\dagger}$	-	-	4.20	4.15	-	-	-
MonoJSG [22]	$100\%^{\dagger}$	-	-	5.65	5.47	-	-	-
GUPNet [27]	$100\%^{\dagger}$	-	-	10.02	9.94	-	-	-
BA-Det [10] Stage 1	100%	70.33	69.41	34.70	34.43	50.63	67.30	66.50
BA-Det [10] Stage 1	10%	53.68	52.30	15.44	15.22	28.21	44.21	43.23
BA-Det [10]	100%	72.96	71.78	40.93	40.51	54.45	68.32	67.36
BA-Det [10]	10%	57.29	55.27	19.70	19.27	32.53	46.91	45.52
SfM [42]+BA-Det [10]	0%	27.84	8.80	2.89	0.75	7.34	10.75	3.31
BA ² -Det(Ours)	0%	60.01	44.81	10.39	8.98	22.24	32.60	23.86

+ 115% Outperform some 3D fullysupervised methods

Method	3D Sup.		3D AP ₅			3D APH	5	LET APL ₅₀]	LET AP5	0
		0-30	30-50	50-∞	0-30	30-50	50-∞	0-30	30-50	50-∞	0-30	30-50	50-∞
BA-Det [10]	100%	87.80	72.52	48.45	86.91	71.52	46.98	66.15	57.97	36.44	82.74	69.58	45.77
BA-Det [10]	10%	73.25	54.00	34.50	71.38	52.22	32.53	38.31	35.57	22.40	56.98	47.28	31.11
SfM [42]+BA-Det [10]	0%	46.87	25.88	9.09	14.26	8.86	2.84	11.35	7.74	2.60	17.59	10.12	3.48
BA ² -Det (Ours)	0%	77.38	54.95	33.74	64.54	37.57	21.64	25.00	23.97	14.63	39.24	31.73	20.30

Ablation study

N_{θ} w/ 3D	$N_{ heta}$ w/ 2D	G_{θ}	r_y w/ d	Iter.	OBA	3D AP ₅	3D APH ₅	LET APL ₅₀	LET AP ₅₀
						20.97	6.70	4.27	7.28
	\checkmark					28.40	11.34	5.02	8.62
	\checkmark	\checkmark				33.75	11.94	9.63	16.80
	\checkmark	\checkmark	\checkmark			41.17	28.73	12.23	21.41
	\checkmark	\checkmark	\checkmark	\checkmark		56.33	42.05	17.87	29.62
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	60.01	44.81	22.24	32.60

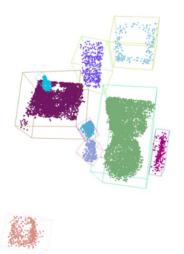


2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction (arXiv:2306.05418)

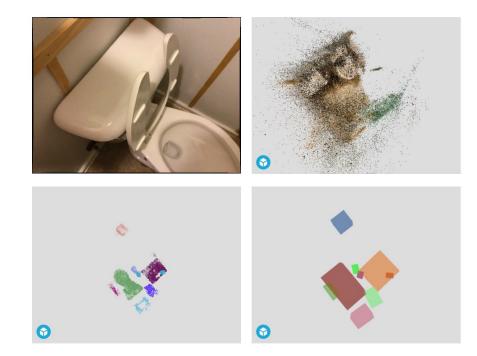
Experiments

Using SAM instead of 2D gt boxes

(a) Input image examples.



(b) Detected 3D boxes from the video.



BA²-Track: Association with Pseudo 3D Location

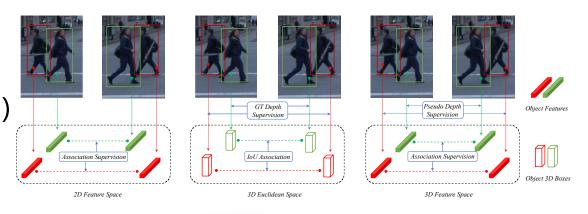
Tracking Objects with 3D Representation from Videos (arXiv:2306.05416)

Motivation

- Association is hard for 2D multiple object tracking
 - Object occlusion/inaccurate motion model
- Lift 2D object in 3D space
- BA²-Det is an example to obtain 3D representation in any 2D video with ego-motion (even w/o off-the-shelf depth)
- BA²-Det + association learning

3D association is much easier

Method	IDS	Early Termination	Wrong Assosication
CenterPoint	2891	2890	1
Immortal Tracker(Ours)	114	113	1



BA²-Track: Association with Pseudo 3D Location

Tracking Objects with 3D Representation from Videos (arXiv:2306.05416)

Object Association with Pseudo 3D Representation

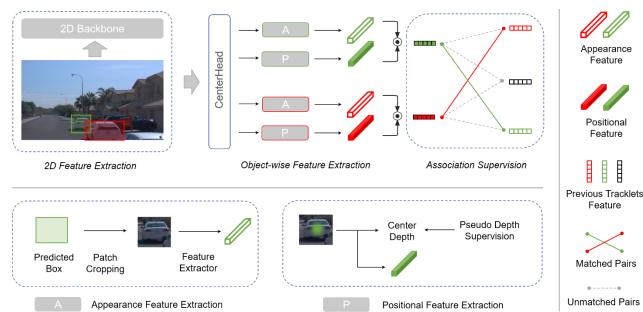
- 3D object feature from center
- 2D/3D feature concatenation

 ${}^{(0)}\mathbf{f}_{j}^{t} = [{}^{(2D)}\mathbf{f}_{j}^{t}, {}^{(3D)}\mathbf{f}_{j}^{t}]$

Cross-graph GCN

$${}^{(l+1)}\mathbf{f}_{j}^{t} = \mathtt{MLP}({}^{(l)}\mathbf{f}_{j}^{t} + \frac{||{}^{(l)}\mathbf{f}_{j}^{t}||_{2}{}^{(l)}\mathbf{m}_{j}^{t-1}}{||{}^{(l)}\mathbf{m}_{j}^{t-1}||_{2}}), l \in [0, L-1]$$

Graph matching from GMTracker



Solution * BA²-Track: Association with Pseudo 3D Location

Tracking Objects with 3D Representation from Videos (arXiv:2306.05416)

Experiments

■ 2D MOT

SOTA performance on WOD and KITTI

Method	Backbone	Split	Category	\mid MOTA \uparrow	IDF1 \uparrow
IoU baseline [29]	ResNet-50	val	Vehicle	38.25	-
Tracktor++ [1, 29]	ResNet-50	val	Vehicle	42.62	-
RetinaTrack [29]	ResNet-50	val	Vehicle	44.92	-
QDTrack [12]	ResNet-50	val	Vehicle	55.6	66.2
P3DTrack (Ours)	DLA-34	val	Vehicle	55.9	65.6

Method	+Label	+Data	HOTA	AssA	ID Sw.	MOTA
QD-3DT [19]	3D GT		72.77	72.19	206	85.94
Mono3DT [18]	3D GT		73.16	74.18	379	84.28
OC-SORT [4]		PD	76.54	76.39	250	90.28
PermaTrack [49]		PD	78.03	78.41	258	91.33
RAM [48]		PD	79.53	80.94	210	91.61
QDTrack [12]			68.45	65.49	313	84.93
TrackMPNN [39]			72.30	70.63	481	87.33
CenterTrack [66]			73.02	71.20	254	88.83
LGM [50]			73.14	72.31	448	87.60
DEFT [5]			74.23	73.79	344	88.38
P3DTrack (Ours)			74.59	76.86	219	85.60

25

Ablation study

+ 1.1 MOTA and 1.6 IDF1 with pseudo 3D rep.

	\mid MOTA \uparrow	IDF1 \uparrow	$\mathrm{FP} \downarrow$	$FN\downarrow$	ID Sw. \downarrow
Baseline	51.0	62.3	8709	331056	9100
+low-quality dets [62]	53.4	64.3	13058	309653	9005
+GNN	56.5	66.5	20381	278752	10129
+3D representation	57.6	68.1	33587	258066	9920

■ 3D MOT

Better than monocular 3D MOT method QD-3DT

	Fully Sup.	$ MOTA_{50} \uparrow$	$Mismatch_{50}\downarrow$	$\text{MOTA}_{30} \uparrow$	$Mismatch_{30}\downarrow$
QD-3DT [11] CC-3DT [9]		0.0308	0.00550 0.00180	0.1867 0.2032	0.01340
SfM [42]+BA-Det [10]+Immortal [48]	v	0.0480	<0.00001	0.0652	0.00030
BA ² -Det (Ours)		0.0352	0.00002	0.1522	0.00008

Better than pretrained/geometric-based depth

3D rep from	\mid MOTA \uparrow	IDF1 ↑	$\mathrm{FP}\downarrow$	$\mathrm{FN}\downarrow$	ID Sw. \downarrow
P3DTrack (Ours)	57.6	68.1	33587	258066	9920
SfM [44] MiDaS v3 [38]	55.5 55.7	66.8 63.4	55823 34514	249935 259471	11145 21058

- Yingyan Li, Yuntao Chen, Jiawei He, Zhaoxiang Zhang. Densely Constrained Depth Estimator for Monocular 3D Object Detection. In European Conference on Computer Vision (ECCV) 2022.
- Jiawei He, Yuntao Chen, Naiyan Wang, Zhaoxiang Zhang. 3D Video Object Detection with Learnable Object-Centric Global Optimization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023.
- Jiawei He, Lue Fan, Yuqi Wang, Yuntao Chen, Zehao Huang, Naiyan Wang, Zhaoxiang Zhang. *Tracking Objects with 3D Representation from Videos.* arXiv:2306.05416.
- Jiawei He, Yuqi Wang, Yuntao Chen, Zhaoxiang Zhang. *2D Supervised Monocular 3D Object Detection by Global-to-Local 3D Reconstruction.* arXiv:2306.05418.

- BA-Det \rightarrow BA²-Det \rightarrow BA²-Track
- 3D detection \rightarrow 2D/3D MOT
- Fully supervise → Weakly-supervise → Self-supervise
- Object reconstruction → Scene+object reconstruction

Demos: https://ba2det.site/

